
1. Static vs. Dynamic memory allocation

A program requires memory to store its data. Memory for a program can be allocated either at compile

time or at run time. Memory allocated during compile time is called static (compile time) memory

allocation. Memory allocated during run time of program is called dynamic (run time) memory allocation.

Memory allocated during compile time is automatically released upon program termination. Dynamically

allocated memory need to be released forcibly when it is no longer in use.

Dynamic memory allocation in C-language

C-language offers following three functions to allocate memory at run time…

i. malloc(). This function is important as we will use this in our linked implementation of data-structures.

ii. calloc()

iii.realloc()

The malloc() function

malloc() function in c-language is used to allocate memory when the program is running. It takes size of

memory block to be allocated as argument and returns the address of very first byte of allocated block(if

malloc() get success in allocating memory). If malloc() fails to allocate memory then it returns a NULL.

The type of pointer that malloc() returns is void, so we can convert it into any type ofpointer as needed.

Syntax of malloc().

Ptr_var=(type_caste*)malloc(size_of_block);

Example: To allocate memory for storing 5 integers---

int *p;

p=(int*)malloc(5*sizeof(int);

This is what happens in memory. (addresses are assumed)

5 7 9 11 13

 120 122 124 126 128

 p

*(p+0)=5; *(p+1)=7; *(p+2)=9; *(p+3)=11; *(p+4)=13;

Note:

free() function is used to release memory allocated during run time.

We use the following to release memory….

120

p+0 means 120

p+1 means 122

p+2 means 124

p+3 means 126

p+4 means 128

Data Structures Lecture-1

free(p); //will delete memory block pointed by pointer p.

Program example 1:

#include <stdio.h>

#include <string.h>

#include <malloc.h>

#include <process.h>

main()

{

 char *p;

 /* allocate memory for string */

 p = (char *) malloc(10);

 if(p==NULL)

 {

 printf("Not enough memory to allocate buffer\n");

 exit(1); /* terminate program if malloc() fails */

 }

 /* copy "RIYAZ" into string */

 strcpy(p, "RIYAZ");

 /* display string */

 printf("String is %s\n", p);

 /* free memory */

 free(p);

}

Program example 2:

#include <stdio.h>

#include <malloc.h>

#include <process.h>

main()

{

 int *p;

 /* allocate memory for a single integer */

 p = (int *) malloc(sizeof(int));

 if(p==NULL)

 {

 printf("Not enough memory to allocate buffer\n");

 exit(1); /* terminate program if malloc() fails */

 }

 /* assign 25 to memory */

 *p=25;

 /* display string */

 printf("The number is %d\n",* p);

 /* free memory */

 free(p);

}

Accessing structure members using pointer:

Syntax:

Pointer_name-> member_name;

Example:

struct student

{

int roll;

int age;

};

main()

{

struct student s1;

struct student *p;

p=&s1;

p->roll=125;

p->age=19;

printf(“%d %d”,p->roll,p->age);

}

 Note:

A field in structure may be pointer too.

Exaample:

Struct record

{

int roll;

struct record *link;

};

Here, the link filed is a pointer of record type, which can store address of any memory block of record

type.

struct record *p; //Declaring pointer p of struct record type.

 p

125 19

roll

age

120

120

 s

p=(struct record*)malloc(sizeof(struct record)); //allocating memory

Above line will allocate a memory block of type struct record and return its address to pointer p.

p->roll=125;

p->link=NULL;

The memory representation is shown below.

Now

struct record *p1; //Declaring pointer p1 of struct record type.

p1=(struct record*)malloc(sizeof(struct record)); //allocating memory

Above line will allocate a memory block of type struct record and return its address to pointer p.

p1->roll=126;

p1->link=NULL;

p->link=p1;

Now,the memory representation with two records(node) is shown below.

This way we can create a list of roll numbers of students in memory. Each record contains the address of

its immediate next record. And the last record (node) contains a NULL in its link field.

And such a list is known as linked list. And this is how we can create dynamic list in which memory

(node) is allocated when the program is running.

125 NULL

roll

link

120

120

125 NULL

120

120

125 NULL

roll

link

120

120

125 140

roll

link

120

120

126 NULL

P

P

140

roll link

Linked list

A linked list is a collection of nodes (record) each pointing to the next. A node of linked list has two

fields, first is data field and second is link field. The data field contains information to be stored and the

link field contains the memory address of immediate next node. The link filed of last node contains

NULL. To maintain integrity of linked list we established an extra pointer called head to keep address of

very first node of linked list.

Structure of node of linked list

Struct node

{

int data;

struct node *link;

};

The type of link pointer is struct node as it

has to store memory address of another

node which is also of struct node type. And

hence we call this a self referencing

structure.

Data Structures Lecture-2(Linked list)

Printing Linked List

Void display()

{

Struct node *t;

If(head==NULL)

{

printf(“Linked list is empty”);

getch();

return;

}

t=head; //head is a global pointer which is pointing to first node if linked list is not

empty.

while(t!=NULL)

{

printf(“%d\n”,t->data);

t=t->link;

}

getch();

}

Operations on linked list

head

If head equals NULL then, linked list is empty.

We write t=head,

and repeatedly print data part of pointer t and then move t to

the next node while t is not equal to head.

Data Structures Lecture-3(Linked list)

The operations that can be performed on linked list are:

1.Creation of linked list.

2. Display/traversal of linked list.

3. Insertion of a new node at the beginning of the linked list.

4. Insertion of a new node at the end of the linked list.

5. Insertion of a new node at a given position of linked list.

6. Deletion of an existing node from the beginning of linked list.

7. Deletion of an existing node from the end of linked list.

8. Merge two linked list.

9. Searching.

10. Sorting.

Program to demonstrate creation, insertion, deletion and display operation on

linked list.

#include<stdio.h>

#include<conio.h>

#include<malloc.h>

#include<process.h>

struct node

{

int data;

struct node *link;

};

struct node *head=NULL;

void insert_last(int n)

{

struct node *newnode,*temp;

newnode=(struct node*)malloc(sizeof(struct node));

newnode->data=n;

newnode->link=NULL;

if(head==NULL)

{

head=newnode;

return;

}

temp=head;

while(temp->link!=NULL)

temp=temp->link;

temp->link=newnode;

}

void insert_begin(int n)

{

struct node *newnode;

newnode=(struct node*)malloc(sizeof(struct node));

newnode->data=n;

newnode->link=head;

head=newnode;

}

void insert_specific(int n,int pos)

{

struct node *newnode,*temp;

int i;

temp=head;

for(i=1;i<pos-1;i++)

{

temp=temp->link;

if(temp==head)

{

printf("Position out of range\n");

getch();

return;

}

}

newnode=(struct node*)malloc(sizeof(struct node));

newnode->data=n;

newnode->link=temp->link;

temp->link=newnode;

}

void del_begin()

{

int n;

struct node *temp;

if(head==NULL)

{

printf("Linked list empty\n");

getch();

return;

}

temp=head;

n=temp->data;

head=head->link;

printf("%d is deleted\n",n);

free(temp);

getch();

}

void del_last()

{

int n;

struct node *temp,*p;

if(head==NULL)

{

printf("Linked list empty\n");

getch();

return;

}

temp=head;

while(temp->link!=NULL)

{

p=temp;

temp=temp->link;

}

n=temp->data;

p->link=NULL;

printf("%d is deleted\n",n);

free(temp);

getch();

}

void del_specific(int pos)

{

int n,i;

struct node *temp,*p;

if(head==NULL)

{

printf("Linked list empty\n");

getch();

return;

}

temp=head;

for(i=1;i<n;i++)

{

p=temp;

temp=temp->link;

if(temp==NULL)

{

printf("Position out of range\n");

getch();

return;

}

}

n=temp->data;

p->link=temp->link;

printf("%d is deleted\n",n);

free(temp);

getch();

}

void display()

{

struct node *temp;

if(head==NULL)

{

printf("Linked list empty");

getch();

return;

}

temp=head;

while(temp!=NULL)

{

printf("%d\n",temp->data);

temp=temp->link;

}

getch();

}

main()

{

int n,pos,ch;

while(1)

{

clrscr();

puts("1.Insertion begin");

puts("2.Insertion last");

puts("3.Insertion at a given position");

puts("4.Deletion begin");

puts("5.Deletion last");

puts("6.Deletion from given position");

puts("7.Display");

puts("8.Exit");

printf("Enter your choice...");

scanf("%d",&ch);

switch(ch)

{

case 1:

printf("Enter an item");

scanf("%d",&n);

insert_begin(n);

break;

case 2:

printf("Enter an item");

scanf("%d",&n);

insert_last(n);

break;

case 3:

printf("Enter item");

scanf("%d",&n);

printf("Enter position");

scanf("%d",&pos);

insert_specific(n,pos);

break;

case 4:

del_begin();

break;

case 5:

del_last();

break;

case 6:

del_specific(pos);

break;

case 7:

display();

break;

case 8:

exit(0);

}

}

}

Hashing Data Structure

Hashing is an important Data Structure which is designed to use a special function called the

Hash function which is used to map (find) a given value with a particular key for faster access of

elements. The efficiency of mapping depends of the efficiency of the hash function used.

Let a hash function H(x) maps the value at the index x%10 in an Array. For example if the

list of values is [11,12,13,14,15] it will be stored at positions {1,2,3,4,5} in the array or Hash

table respectively.

Data structure Lecture-9

What are Hash Functions and How to choose a good

Hash Function?

What is a Hash Function?

A function that converts a given big phone number(any big number) to a small practical integer

value. The mapped integer value is used as an index in the hash table. In simple terms, a hash

function maps a big number or string to a small integer that can be used as the index in the hash

table.

What is meant by Good Hash Function?
A good hash function should have the following properties:

1. Efficiently computable.

2. Should uniformly distribute the keys (Each table position equally likely for each key)

For example: For phone numbers, a bad hash function is to take the first three digits. A better

function is considered the last three digits. Please note that this may not be the best hash

function. There may be better ways.

In practice, we can often employ heuristic techniques to create a hash function that performs

well. Qualitative information about the distribution of the keys may be useful in this design

process. In general, a hash function should depend on every single bit of the key, so that two

keys that differ in only one bit or one group of bits (regardless of whether the group is at the

beginning, end, or middle of the key or present throughout the key) hash into different values.

Thus, a hash function that simply extracts a portion of a key is not suitable. Similarly, if two keys

are simply digited or character permutations of each other (such as 139 and 319), they should

also hash into different values.

The two heuristic methods are:

i. hashing by division and

ii. hashing by multiplication

which are as follows:

1. The mod method:
 In this method for creating hash functions, we map a key into one of the slots of table

by taking the remainder of key divided by table_size. That is, the hash function is
 h(key) = key mod table_size

i.e. key % table_size

 Since it requires only a single division operation, hashing by division is quite fast.

 When using the division method, we usually avoid certain values of table_size like

table_size should not be a power of a number suppose r, since if table_size = r^p,

then h(key) is just the p lowest-order bits of key. Unless we know that all low-order

p-bit patterns are equally likely, we are better off designing the hash function to

depend on all the bits of the key.

 It has been found that the best results with the division method are achieved when the

table size is prime. However, even if table_size is prime, an additional restriction is

called for. If r is the number of possible character codes on an computer, and

if table_size is a prime such that r % table_size equal 1, then hash function h(key) =

key % table_size is simply the sum of the binary representation of the characters in

the key mod table_size.

Example:
 Suppose r = 256 and table_size = 17, in which r % table_size i.e. 256 % 17 = 1.

 So for key = 37596, its hash is
37596 % 17 = 12

 But for key = 573, its hash function is also
573 % 12 = 12

 Hence it can be seen that by this hash function, many keys can have the same hash.

This is called Collision.

 A prime not too close to an exact power of 2 is often good choice for table_size.

2. The multiplication method:
 In multiplication method, we multiply the key k by a constant real number c in the

range 0 < c < 1 and extract the fractional part of k * c.

 Then we multiply this value by table_size m and take the floor of the result. It can be

represented as

 h(k) = floor (m * (k * c mod 1))

 or

 h(k) = floor (m * frac (k * c))

https://www.geeksforgeeks.org/hashing-set-2-separate-chaining/

where the function floor(x), available in standard library math.h, yields the integer

part of the real number x, and frac(x) yields the fractional part. [frac(x) = x –

floor(x)]
 An advantage of the multiplication method is that the value of m is not critical, we

typically choose it to be a power of 2 (m = 2p for some integer p), since we can then

easily implement the function on most computers

 Suppose that the word size of the machine is w bits and that key fits into a single

word.

 We restrict c to be a fraction of the form s / (2w), where s is an integer in the range 0 <

s < 2w.

 Referring to figure, we first multiply key by the w-bit integer s = c * 2w. The result is

a 2w-bit value

 r1 * 2w + r0

 where r1 = high-order word of the product

 r0 = lower order word of the product

 Although this method works with any value of the constant c, it works better with

some values than the others.

c ~ (sqrt (5) – 1) / 2 = 0.618033988 . . .

is likely to work reasonably well.

3. Example:
 Suppose k = 123456, p = 14,

 m = 2^14 = 16384, and w = 32.

 Adapting Knuth’s suggestion, c to be fraction of the form s / 2^32.

 Then key * s = 327706022297664 = (76300 * 2^32) + 17612864,

 So r1 = 76300 and r0 = 176122864.

 The 14 most significant bits of r0 yield the value h(key) = 67.

https://www.geeksforgeeks.org/ceil-floor-functions-cpp/

What is Collision?

Since a hash function gets us a small number for a key which is a big integer or string, there is a

possibility that two keys result in the same value. The situation where a newly inserted key maps to an

already occupied slot in the hash table is called collision and must be handled using some collision

handling technique.

What are the chances of collisions with large table?
Collisions are very likely even if we have big table to store keys. An important observation

is Birthday Paradox. With only 23 persons, the probability that two people have the same

birthday is 50%.

How to handle Collisions?
There are mainly two methods to handle collision:

1) Separate Chaining (open hashing)

2) Open Addressing (close hashing)

Separate Chaining:

The idea is to make each cell of hash table point to a linked list of records that have same hash

function value.
Let us consider a simple hash function as “key mod 7” and sequence of keys as 50, 700, 76, 85, 92, 73,

101.

https://www.geeksforgeeks.org/birthday-paradox/

Advantages:
1) Simple to implement.

2) Hash table never fills up, we can always add more elements to the chain.

3) Less sensitive to the hash function or load factors.

4) It is mostly used when it is unknown how many and how frequently keys may be inserted or

deleted.

Disadvantages:
1) Cache performance of chaining is not good as keys are stored using a linked list. Open

addressing provides better cache performance as everything is stored in the same table.

2) Wastage of Space (Some Parts of hash table are never used)

3) If the chain becomes long, then search time can become O(n) in the worst case.

4) Uses extra space for links.

Performance of Chaining:
Performance of hashing can be evaluated under the assumption that each key is equally likely to

be hashed to any slot of table (simple uniform hashing).

 m = Number of slots in hash table

 n = Number of keys to be inserted in hash table

 Load factor α = n/m

 Expected time to search = O(1 + α)

 Expected time to insert/delete = O(1 + α)

 Time complexity of search insert and delete is

 O(1) if α is O(1)

Open Addressing

Like separate chaining, open addressing is a method for handling collisions. In Open Addressing,

all elements are stored in the hash table itself. So at any point, size of the table must be greater

than or equal to the total number of keys (Note that we can increase table size by copying old

data if needed).

Insert(k): Keep probing until an empty slot is found. Once an empty slot is found, insert k.

Search(k): Keep probing until slot‟s key doesn‟t become equal to k or an empty slot is reached.

Delete(k): Delete operation is interesting. If we simply delete a key, then search may fail. So

slots of deleted keys are marked specially as “deleted”.

Insert can insert an item in a deleted slot, but the search doesn‟t stop at a deleted slot.

Open Addressing is done following ways:

a) Linear Probing: In linear probing, we linearly probe for next slot. For example, typical gap

between two probes is 1 as taken in below example also.

let hash(x) be the slot index computed using hash function and S be the table size

If slot hash(x) % S is full, then we try (hash(x) + 1) % S

If (hash(x) + 1) % S is also full, then we try (hash(x) + 2) % S

If (hash(x) + 2) % S is also full, then we try (hash(x) + 3) % S

..

..

Let us consider a simple hash function as “key mod 7” and sequence of keys as 50, 700, 76, 85,

92, 73, 101.

Clustering: The main problem with linear probing is clustering, many consecutive elements

form groups and it starts taking time to find a free slot or to search an element.

b) Quadratic Probing We look for i2„th slot in i‟th iteration.

let hash(x) be the slot index computed using hash function.

If slot hash(x) % S is full, then we try (hash(x) + 1*1) % S

If (hash(x) + 1*1) % S is also full, then we try (hash(x) + 2*2) % S

If (hash(x) + 2*2) % S is also full, then we try (hash(x) + 3*3) % S

..

..

c) Double Hashing We use another hash function hash2(x) and look for i*hash2(x) slot in i‟th

rotation.

let hash(x) be the slot index computed using hash function.

If slot hash(x) % S is full, then we try (hash(x) + 1*hash2(x)) % S

If (hash(x) + 1*hash2(x)) % S is also full, then we try (hash(x) + 2*hash2(x)) % S

If (hash(x) + 2*hash2(x)) % S is also full, then we try (hash(x) + 3*hash2(x)) % S

..

..

Comparison of above three:
Linear probing has the best cache performance but suffers from clustering. One more advantage

of Linear probing is easy to compute.

Quadratic probing lies between the two in terms of cache performance and clustering.

Double hashing has poor cache performance but no clustering. Double hashing requires more

computation time as two hash functions need to be computed.

https://www.geeksforgeeks.org/double-hashing/

S.No. Separate Chaining Open Addressing

1. Chaining is Simpler to implement.

Open Addressing requires more

computation.

2.

In chaining, Hash table never fills up, we

can always add more elements to chain.

In open addressing, table may become

full.

3.

Chaining is Less sensitive to the hash

function or load factors.

Open addressing requires extra care

for to avoid clustering and load

factor.

4.

Chaining is mostly used when it is

unknown how many and how frequently

keys may be inserted or deleted.

Open addressing is used when the

frequency and number of keys is

known.

5.

Cache performance of chaining is not

good as keys are stored using linked list.

Open addressing provides better

cache performance as everything is

stored in the same table.

6.

Wastage of Space (Some Parts of hash

table in chaining are never used).

In Open addressing, a slot can be used

even if an input doesn‟t map to it.

7. Chaining uses extra space for links. No links in Open addressing

Performance of Open Addressing:

Like Chaining, the performance of hashing can be evaluated under the assumption that each key

is equally likely to be hashed to any slot of the table (simple uniform hashing)

 m = Number of slots in the hash table

 n = Number of keys to be inserted in the hash table

 Load factor α = n/m (< 1)

 Expected time to search/insert/delete < 1/(1 - α)

 So Search, Insert and Delete take (1/(1 - α)) time

Searching

Searching means to find the location of a given element in a list (array).

Searching operation requires tlowo things: (i). An array (list) of elements and

 (ii). A key element to search on array.

Search operation is said to be success if given key element exists in the list.

Search operation is said to be fail if given key does not exist in the list.

Example: Consider the following array with 10 integer elements. And we want to

search key 45.

12 19 17 25 10 45 24 15 40 35

 For key=45, search is success with following output:

45 is present at position 6 and index 5.

For key=29, search is failed with following output:

29 does not exist in the list.

We have two searching techniques available:

Data Structures Lecture-10

i). Linear search.

ii). Binary search.

i).Linear search proceed by testing each element for a match with key element

starting from 0
th

 index onward. And as soon an element matches to the key, the

search stops with success. If element is not present then after testing key with all

elements search fails and stop.

Program to implement linear search:

main()

{

int a[10],n=10,key,i,f=0;

clrscr();

printf("Enter %d numbers\n",n);

for(i=0;i<n;i++)

scanf("%d",&a[i]);

printf("Enter number to search:");

scanf("%d",&key);

for(i=0;i<n;i++)

{

if(key==a[i])

{

f=1;

break;

}

}

if(f==1)

printf("Element found at position %d",i+1);

else

printf("Element not found");

getch();

}

ii).Binary search works only on sorted array (list). Suppose a list is sorted in

ascending order, then binary search proceed by comparing the key with middle

element of array and

i).if the key is equals to middle element then search immediately stop with success.

ii). if key is less than middle element then binary search is performed in left half of

the array (excluding middle).

iii). if key is greater than middle element then binary search is performed in right

half of the array (excluding middle).

The above process terminates upon, either success of search or certain condition of

failure is satisfied.

Program to implement binary search:

main()

{

int a[10],n=10,low,high,mid,f=0,i,key;

clrscr();

printf("Enter %d numbers in ascending order",n);

for(i=0;i<n;i++)

scanf("%d",&a[i]);

printf("Enter number to search:");

scanf("%d",&key);

//Binary search begins here...

low=0;

high=n-1;

while(low<=high)

{

mid=(low+high)/2;

if(key==a[mid])

{

f=1;

break;

}

else if(key<a[mid])

high=mid-1;

else

low=mid+1;

}

if(f==1)

printf("Element found at position %d",mid+1);

else

printf("Element does not exist");

getch();

}

